Perhatikan
pernytaan di bawah ini! Ø Ù Ú Þ Û
“Jika suatu bender
adalah bendera RI maka ada warna merah pada bendera tersebut”
Bentuk
umum implikasi di atas adalah “p Þ
q”
dengan
p : Bendera RI
q : Bendera yang
ada warna merahnya.
Dari implikasi
diatas dapat dibentuk tiga implikasi lainnya yaitu :
1. KONVERS,
yaitu q Þ p
Sehingga
implikasi diatas menjadi :
“ Jika
suatu bendera ada warna merahnya, maka bendera tersebut adalah bendera RI”.
2. INVERS,
yaitu Øp Þ Øq
Sehingga
implikasi diatas menjadi :
“ Jika
suatu bendera bukan bendera RI, maka pada bendera tersebut tidak ada warna
merahnya”.
3. KONTRAPOSISI,
yaitu Øq Þ Øp
Sehingga implikasi di atas menjadi :
“ Jika suatu bendera tidak ada warna merahnya, maka bendera tersebut bukan
bendera RI”.
Suatu hal yang
penting dalam logika adalah kenyataan bahwa suatu implikasi selalu ekuivalen
dengan kontraposisinya, akan tetapi tidak demikian halnya dengan invers dan konversnya.
Hal ini
dapat dilihat dari tabel kebenaran berikut
p
|
q
|
Øp
|
Øq
|
pÞq
|
q Þ p
|
Øp Þ Øq
|
Øq Þ Øp
|
T
|
T
|
F
|
F
|
T
|
T
|
T
|
T
|
T
|
F
|
F
|
T
|
F
|
T
|
T
|
F
|
F
|
T
|
T
|
F
|
T
|
F
|
F
|
T
|
F
|
F
|
T
|
T
|
T
|
T
|
T
|
T
|
INGKARAN KONVERS,
INVERS, DAN KONTRAPOSISI
Contoh 1.8:
Tentukan ingkaran
atau negasi konvers, invers, dan kontraposisi dari implikasi berikut.
“Jika suatu bendera
adalah bendera RI maka bendera tersebut berwarna merah dan putih”
Penyelesaian
Misal p
: Suatu bendera adalah bendera RI
q : Bendera tersebut berwarna merah dan
putih
maka kalimatnya
menjadi p Þ q atau jika menggunakan operator dan maka p Þ q
ekuivalen(sebanding/») dengan Øp Ú q.
Sehingga
1.
Negasi dari implikasi
Implikasi : (pÞq) » Øp Ú q
Negasinya : Ø(ØpÚq) » pÙØq
Kalimatnya :“Suatu bendera adalah bendera RI dan
bendera tersebut tidak berwarna
merah dan putih”.
2.
Negasi dari konvers
Konvers : qÞp » ØqÚp
Negasinya : Ø(ØqÚp) » qÙØp
Kalimatnya : “Ada/Terdapat bendera berwarna merah
dan putih tetapi bendera tersebut bukan bendera RI”.
3.
Negasi dari invers
Invers : Øp Þ Øq » Ø(Øp)ÚØq) » pÙØq
Negasinya : Ø(pÙØq) » ØpÚq
Kalimatnya :
“Suatu bendera bukan bendera RI atau bendera tersebut berwarna merah dan
putih”.
4.
Negasi dari kontraposisi
Kontraposisi : Øq Þ Øp » Ø(Øq)ÚØp » qÚØp
Negasinya : Ø(qÚØp) » ØqÙp
Kalimatnya : “
Suatu bendera tidak berwarna merah dan putih dan bendera tersebut adalah
bendera RI”.
1.5 EKUIVALENSI LOGIKA
Pada tautologi, dan juga kontradiksi, dapat dipastikan bahwa jika dua buah
ekspresi logika adalah tautologi, maka kedua buah ekspresi logika tersebut
ekuivalen secara logis, demikian pula jika keduanya kontradiksi. Persoalannya
ada pada contingent, karena memiliki
semua nilai T dan F. Tetapi jika urutan T dan F atau sebaliknya pada tabel
kebenaran tetap pada urutan yang sama maka tetap disebut ekuivalen secara
logis. Perhatikan pernyataan berikut :
Contoh 1.9 :
1. Dewi sangat
cantik dan peramah.
2. Dewi peramah
dan sanagt cantik.
Kedua
pernyataan di atas, tanpa dipikir panjang, akan dikatakan ekuivalen atau sama
saja. Dalam bentuk ekspresi logika dapat ditulis sebagai berikut :
A = Dewi sangat
cantik.
B = Dewi
peramah.
Maka ekspresi
logikanya :
1. A Ù B
2. B Ù A
Jika dikatakan
kedua buah ekspresi logika tersebut ekuivalen secara logis maka dapat ditulis A
Ù B º B Ù A. Ekuivalensi logis dari kedua ekspresi logika tersebut dapat dibuktikan
dengan tabel kebenaran sebagai berikut ini :
A
|
B
|
AÙB
|
BÙA
|
T
|
T
|
T
|
T
|
T
|
F
|
F
|
F
|
F
|
T
|
F
|
F
|
F
|
F
|
F
|
F
|
Pembuktian
dengan tabel kebenaran diatas, walaupun setiap ekspresi logika memiliki nilai T
dan F, tetapi karena memiliki urutan yang sama, maka secara logis tetap
dikatakan ekuivalen. Tetapi jika urutan T dan F tidak sama, maka tidak biasa
dikatakan ekuivalen secara logis. Tabel kebenaran merupakan alat untuk
membuktikan kebenaran ekuivalensi secara logis. Kesimpulan diambil berdasarkan
hasil dari tabel kebenaran tersebut. Lihat pernyataan berikut ini :
Contoh 1.10 :
1. Badu tidak
pandai, atau dia tidak jujur.
2. Adalah tidak
benar jika Badu pandai dan jujur.
Secara intuitif
dapat ditebak bahwa kedua pernyataan di atas sebenarnya sama, tetapi bagaimana
jika idbuktikan dengan menggunkan tabel kebenaran berdasarkan ekspresi logika.
Adapaun langkah-langkahnya :
1. Ubah dahulu
argumen di atas ke dalam bentuk ekspresi/notasi logika.
Misal : A=Badu pandai
B=Badu jujur
Maka kalimatnya menjadi
1. ØAÚØB
2. Ø(AÙB)
2. Buat tabel
kebenarannya
A
|
B
|
ØA
|
ØB
|
AÙB
|
ØAÚØB
|
Ø(AÙB)
|
T
|
T
|
F
|
F
|
T
|
F
|
F
|
T
|
F
|
F
|
T
|
F
|
T
|
T
|
F
|
T
|
T
|
F
|
F
|
T
|
T
|
F
|
F
|
T
|
T
|
F
|
T
|
T
|
Perhatikan
ekspresi di atas! Meskipun kedua ekspresi
logika di atas memiliki nilai kebenaran yang sama, ada nilai T dan F, keduanya
baru dikatakan ekuivalen secara logis jika dihubungkan dengan perangkai
ekuivalensi dan akhirnya menghasilkan tautologi.
3. Tambahkan perangkai biimplikasi untuk menghasilkan
tautologi
ØAÚØB
|
Ø(AÙB)
|
ØAÚØB Û Ø(AÙB)
|
F
|
F
|
T
|
T
|
T
|
T
|
T
|
T
|
T
|
T
|
T
|
T
|
Jika hasilnya
adalah tautologi (bernilai T semua), maka dikatakan bahwa kedua argumen
tersebut ekuivalen secara logis.
0 Post a Comment:
Posting Komentar