IMPLIKASI
Misalkan ada 2
pernyataan p dan q, untuk menunjukkan atau membuktikan bahwa jika p bernilai
benar akan menjadikan q bernilai benar juga, diletakkan kata “JIKA” sebelum
pernyataan pertama lalu diletakkan kata “MAKA” sebelum pernyataan kedua sehingga
didapatkan suatu pernyataan majemuk yang disebut dengan “IMPLIKASI/PERNYATAAN
BERSYARAT/KONDISIONAL/ HYPOTHETICAL dengan notasi “Þ”.
Notasi pÞq dapat dibaca :
- Jika p maka q
- q jika p
- p adalah syarat cukup untuk q
- q adalah syarat perlu untuk p
Contoh 1.4:
- p : Pak Ali adalah seorang haji.
q : Pak
Ali adalah seorang muslim.
p Þ q :
Jika Pak Ali adalah seorang haji maka pastilah dia seorang muslim.
- p : Hari hujan.
q : Adi
membawa payung.
Benar
atau salahkah pernyataan berikut?
- Hari benar-benar hujan dan
Adi benar-benar membawa payung.
- Hari benar-benar hujan
tetapi Adi tidak membawa payung.
- Hari tidak hujan tetapi Adi
membawa payung.
- Hari tidak hujan dan Adi tidak
membawa payung.
BIIMPLIKASI
Biimplikasi atau
bikondosional adalah pernyataan majemuk dari dua pernyataan p dan q yang
dinyatakan dengan notasi “p Û q” yang bernilai
sama dengan (p Þq) Ù (q Þ p) sehingga dapat dibaca “ p jika dan hanya jika
q” atau “p bila dan hanya bila q”. Biimplikasi 2 pernytaan hanya akan bernilai benar jika implikasi kedua
kalimat penyusunnya sama-sama bernilaii benar.
Contoh 1.5 :
p : Dua garis saling berpotongan adalah
tegak lurus.
q : Dua garis saling membentuk sudut 90
derajat.
p Û q : Dua
garis saling berpotongan adalah tegak lurus jika dan hanya jika dan hanya jika
dua garis saling membentuk sudut 90 derajat.
TABEL KEBENARAN
p
|
q
|
Øp
|
Øq
|
pÚq
|
pÙq
|
pÞq
|
pÛq
|
p Ã… q
|
T
|
T
|
F
|
F
|
T
|
T
|
F
|
T
|
T
|
T
|
F
|
F
|
T
|
T
|
F
|
T
|
F
|
F
|
F
|
T
|
T
|
F
|
T
|
F
|
T
|
T
|
F
|
F
|
F
|
T
|
T
|
F
|
F
|
F
|
T
|
T
|
Untuk
menghindari perbedaan konotasi dan keganjilan arti dalam menerjemahkan
simbol-simbol logika maka dalam matematika tidak disyaratkan adanya hubungan
antara kedua kalimat penyusunnya. Kebenaran suatu kalimat berimplikasi
semata-mata hanya tegantung pada nilai kebenaran kaliamat penyusunnya. Karena
itu digunakan tabel kebenaran penghubung. Jika p dan q adalah kalimat-kalimat
dimana T=true/benar dan F=false/salah, maka untuk n variable (p,q,…) maka tabel
kebenaran memuat 2n baris.
0 Post a Comment:
Posting Komentar