Diberdayakan oleh Blogger.

30.12.13

Konvers,Invers, Dan Kontraposisi

Perhatikan pernytaan di bawah ini! Ø  Ù  Ú  Þ  Û

“Jika suatu bender adalah bendera RI maka ada warna merah pada bendera tersebut”

Bentuk umum implikasi di atas adalah “p Þ q” dengan
p : Bendera RI
q : Bendera yang ada warna merahnya.

Dari implikasi diatas dapat dibentuk tiga implikasi lainnya yaitu :
1.   KONVERS, yaitu q Þ p
Sehingga implikasi diatas menjadi :
“ Jika suatu bendera ada warna merahnya, maka bendera tersebut adalah bendera RI”.

2.   INVERS, yaitu Øp Þ Øq
Sehingga implikasi diatas menjadi :
“ Jika suatu bendera bukan bendera RI, maka pada bendera tersebut tidak ada warna merahnya”.

3.   KONTRAPOSISI, yaitu Øq Þ Øp
Sehingga implikasi di atas menjadi :
“ Jika suatu bendera tidak ada warna merahnya, maka bendera tersebut bukan bendera RI”.

Suatu hal yang penting dalam logika adalah kenyataan bahwa suatu implikasi selalu ekuivalen dengan kontraposisinya, akan tetapi tidak demikian halnya dengan  invers dan konversnya.

Hal ini dapat dilihat dari tabel kebenaran berikut

p
q
Øp
Øq
pÞq
q Þ p
Øp Þ Øq
Øq Þ Øp
T
T
F
F
T
T
T
T
T
F
F
T
F
T
T
F
F
T
T
F
T
F
F
T
F
F
T
T
T
T
T
T


INGKARAN KONVERS, INVERS, DAN KONTRAPOSISI

Contoh 1.8:
Tentukan ingkaran atau negasi konvers, invers, dan kontraposisi dari implikasi berikut.
“Jika suatu bendera adalah bendera RI maka bendera tersebut berwarna merah dan putih”

Penyelesaian

Misal p : Suatu bendera adalah bendera RI
        q : Bendera tersebut berwarna merah dan putih
maka kalimatnya menjadi p Þ q atau jika menggunakan operator dan maka p Þ q ekuivalen(sebanding/») dengan  Øp Ú q. Sehingga

1.   Negasi dari implikasi
Implikasi           : (pÞq) » Øp Ú q
Negasinya        : Ø(ØpÚq) » pÙØq
Kalimatnya       :“Suatu bendera adalah bendera RI dan bendera       tersebut tidak berwarna merah dan putih”.
2.   Negasi dari konvers
Konvers            : qÞp » ØqÚp
Negasinya        : Ø(ØqÚp) » qÙØp
Kalimatnya       : “Ada/Terdapat bendera berwarna merah dan putih tetapi bendera tersebut bukan bendera RI”.
3.   Negasi dari invers
Invers              : Øp Þ Øq » Ø(Øp)ÚØq) » pÙØq
Negasinya        : Ø(pÙØq) » ØpÚq
Kalimatnya       : “Suatu bendera bukan bendera RI atau bendera tersebut berwarna merah dan putih”.
4.   Negasi dari kontraposisi
Kontraposisi      : Øq Þ Øp » Ø(Øq)ÚØp » qÚØp
Negasinya        : Ø(qÚØp) » ØqÙp
Kalimatnya       : “ Suatu bendera tidak berwarna merah dan putih dan bendera tersebut adalah bendera RI”.


1.5 EKUIVALENSI LOGIKA

          Pada tautologi, dan juga kontradiksi, dapat dipastikan bahwa jika dua buah ekspresi logika adalah tautologi, maka kedua buah ekspresi logika tersebut ekuivalen secara logis, demikian pula jika keduanya kontradiksi. Persoalannya ada pada contingent, karena memiliki semua nilai T dan F. Tetapi jika urutan T dan F atau sebaliknya pada tabel kebenaran tetap pada urutan yang sama maka tetap disebut ekuivalen secara logis. Perhatikan pernyataan berikut :

Contoh 1.9 :
1. Dewi sangat cantik dan peramah.
2. Dewi peramah dan sanagt cantik.

Kedua pernyataan di atas, tanpa dipikir panjang, akan dikatakan ekuivalen atau sama saja. Dalam bentuk ekspresi logika dapat ditulis sebagai berikut :
A = Dewi sangat cantik.
B = Dewi peramah.
Maka ekspresi logikanya :
1. A Ù B
2. B Ù A

Jika dikatakan kedua buah ekspresi logika tersebut ekuivalen secara logis maka dapat ditulis A Ù B º B Ù A. Ekuivalensi logis dari kedua ekspresi logika tersebut dapat dibuktikan dengan tabel kebenaran sebagai berikut ini :
A
B
AÙB
BÙA
T
T
T
T
T
F
F
F
F
T
F
F
F
F
F
F

Pembuktian dengan tabel kebenaran diatas, walaupun setiap ekspresi logika memiliki nilai T dan F, tetapi karena memiliki urutan yang sama, maka secara logis tetap dikatakan ekuivalen. Tetapi jika urutan T dan F tidak sama, maka tidak biasa dikatakan ekuivalen secara logis. Tabel kebenaran merupakan alat untuk membuktikan kebenaran ekuivalensi secara logis. Kesimpulan diambil berdasarkan hasil dari tabel kebenaran tersebut. Lihat pernyataan berikut ini :

Contoh 1.10 :
1. Badu tidak pandai, atau dia tidak jujur.
2. Adalah tidak benar jika Badu pandai dan jujur.
Secara intuitif dapat ditebak bahwa kedua pernyataan di atas sebenarnya sama, tetapi bagaimana jika idbuktikan dengan menggunkan tabel kebenaran berdasarkan ekspresi logika. Adapaun langkah-langkahnya :

1. Ubah dahulu argumen di atas ke dalam bentuk ekspresi/notasi logika.
    Misal : A=Badu pandai
               B=Badu jujur
    Maka kalimatnya menjadi
    1. ØAÚØB
    2. Ø(AÙB)

2. Buat tabel kebenarannya

A
B
ØA
ØB
AÙB
ØAÚØB
Ø(AÙB)
T
T
F
F
T
F
F
T
F
F
T
F
T
T
F
T
T
F
F
T
T
F
F
T
T
F
T
T

Perhatikan ekspresi di atas! Meskipun kedua ekspresi logika di atas memiliki nilai kebenaran yang sama, ada nilai T dan F, keduanya baru dikatakan ekuivalen secara logis jika dihubungkan dengan perangkai ekuivalensi dan akhirnya menghasilkan tautologi.

3. Tambahkan perangkai biimplikasi untuk menghasilkan tautologi

ØAÚØB
Ø(AÙB)
ØAÚØB Û Ø(AÙB)
F
F
T
T
T
T
T
T
T
T
T
T

Jika hasilnya adalah tautologi (bernilai T semua), maka dikatakan bahwa kedua argumen tersebut ekuivalen secara logis.


0 komentar:

Posting Komentar